Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 356: 141781, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38554875

RESUMO

At present the information regarding the occurrence of human pharmaceuticals (PhaCs) in coral reefs and their potential impacts on the associated fauna is limited. To optimize the collection of data in these delicate environments, we employed a solid-phase microextraction (bioSPME) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) procedure that enabled in vivo determinations in soft corals. Specifically, we researched the antibiotics Ofloxacin Sulfamethoxazole and Clarithromycin, the anti-inflammatory Diclofenac Propyphenazone Ketoprofen and Amisulpride, the neuroactive compounds Gabapentin-lactam, the beta-blocker Metoprolol and the antiepileptic Carbamazepine. Reproducibility was between 2.1% and 9.9% and method detection limits LODs) were between 0.2 and 1.6 ng/g and LOQs between 0.8 and 5.4 mg/g. The method was then applied to establish a baseline for the occurrence of these compounds in the Maldivian archipelago. Colonies of Sarcophyton sp. and Sinularia sp. were sampled along an inner-outer reef transect. Five of the ten targeted PhaCs were identified, and 40% of the surveyed coral colonies showed the occurrence of at least one of the selected compounds. The highest concentrations were found inside the atoll rim. Oxoflacin (9.5 ± 3.9 ng/g) and Ketoprofen (4.5 ± 2.3 ng/g) were the compounds with the highest average concentrations. Outside the atoll rim, only one sample showed contamination levels above the detection limit. No significant differences were highlighted among the two surveyed soft coral species, both in terms of average concentrations and bioconcentration factors (BCFs).

2.
Carbohydr Polym ; 333: 121981, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494233

RESUMO

In view of health and environmental concerns, together with the upcoming restrictive regulations on per- and polyfluoroalkyl substances (PFAS), less impactful materials must be explored for the hydrophobization of surfaces. Polysaccharides, and especially chitosan, are being explored for their desirable properties of film formation and ease of modification. We present a PFAS-free chitosan superhydrophobic coating for textiles deposited through a solvent-free method. By contact angle analysis and drop impact, we observe that the coating imparts hydrophobicity to the fabrics, reaching superhydrophobicty (θA = 151°, θR = 136°) with increased amount of coating (from 1.6 g/cm2). This effect is obtained by the combination of chemical water repellency of the modified chitosan and the nano- and micro-roughness, assessed by SEM analysis. We perform a comprehensive study on the durability of the coatings, showing good results especially for acidic soaking where the hydrophobicity is maintained until the 8th cycle of washing. We assess the degradation of the coating by a TGA-IR investigation to define the compounds released with thermal degradation, and we confirm the coating's biodegradability by biochemical oxygen consumption. Finally, we demonstrate its biocompatibility on keratinocytes (HaCaT cell line) and fibroblasts (HFF-1 cell line), confirming that the coating is safe for human skin cells.


Assuntos
Quitosana , Humanos , Interações Hidrofóbicas e Hidrofílicas , Solventes , Fibroblastos , Ácidos
3.
Mar Pollut Bull ; 200: 116125, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359481

RESUMO

Phthalates are widely employed plasticizers blended to plastic polymers that, during plastic aging and weathering are prone to leach in the surrounding environment. Thus, phthalates were proposed to indirectly evaluate MPs contamination in marine environments, with still uncertain and scarce data, particularly for wildlife. This study investigates simultaneously microplastics (MPs) and phthalates (PAEs) occurrence in wild Actinia equina and Anemonia viridis, two common and edible sea anemone species. Both species had a 100 % frequency of MPs occurrence, with similar average concentrations. PAEs were detected in 70 % of samples, with concentrations up to 150 ng/g in A. equina and 144.3 ng/g for A. viridis. MPs and PAEs present in sea anemone tissues appear to reflect seawater plastic contamination conditions in the study area. Given the rapid biodegradation of PAEs, occurrence and concentrations of both these additives and their metabolites could be useful tracers of short-term plastic debris-biota interactions.


Assuntos
Ácidos Ftálicos , Anêmonas-do-Mar , Animais , Microplásticos , Plásticos
4.
Environ Pollut ; 343: 123107, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070641

RESUMO

A growing number of studies have reported the toxic effects of nanoplastics (NPs) on organisms. However, the focus of these studies has almost exclusively been on the use of polystyrene (PS) nanospheres. Herein, we aim to evaluate the sublethal effects on Daphnia magna juveniles of three different NP polymers: PS-NPs with an average size of 200 nm, polyethylene [PE] NPs and polyvinyl chloride [PVC] NPs with a size distribution between 50 and 350 nm and a comparable mean size. For each polymer, five environmentally relevant concentrations were tested (from 2.5 to 250 µg/L) for an exposure time of 48 h. NP effects were assessed at the biochemical level by investigating the amount of reactive oxygen species (ROS) and the activity of the antioxidant enzyme catalase (CAT) and at the behavioral level by evaluating the swimming behavior (distance moved). Our results highlight that exposure to PVC-NPs can have sublethal effects on Daphnia magna at the biochemical and behavioral levels. The potential role of particle size on the measured effects cannot be excluded as PVC and PE showed a wider size range distribution than PS, with particles displaying sizes from 50 to 350 nm. However, we infer that the chemical structure of PVC, which differs from that of PE of the same range size, concurs to explain the observed effects. Consequently, as PS seems not to be the most hazardous polymer, we suggest that the use of data on PS toxicity alone can lead to an underestimation of NP hazards.


Assuntos
Poluentes Químicos da Água , Animais , Daphnia , Poliestirenos/toxicidade , Espécies Reativas de Oxigênio , Polietileno/farmacologia , Poluentes Químicos da Água/análise , Plásticos/toxicidade
5.
Mar Pollut Bull ; 197: 115753, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37952374

RESUMO

Plastic and oil pollution are closely linked to our dependence on petroleum derivatives. Their excessive use and inefficiencies in their management, have led to negative impacts on marine ecosystems since their very introduction. Agglomerates of tar, plastic, paraffins, and other petrochemicals and oil derivatives with naturally occurring materials, are increasingly widespread in coastal environments, stalling as an iconic and readable sign of environmental degradation. Starting from a historical review of the available reports on the occurrence of similar aggregates dating back to 1971, we highlight how most of these observations are based on the morphological description of the petroleum residues with no chemical fingerprinting and are mainly related to materials stranded on the coastline, with few and unclear indications for the open sea. We discuss here a list of scientific questions and knowledge gaps, that need to be examined by future studies.


Assuntos
Poluição por Petróleo , Petróleo , Petróleo/análise , Ecossistema , Monitoramento Ambiental , Meio Ambiente
6.
Mar Pollut Bull ; 196: 115583, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769405

RESUMO

A new geological formation consisting of plastic debris admixed to petroleum oil residue, termed "plastitar", has been recently described in the Canary Islands. Here, we report its widespread occurrence across the Mediterranean coast and new insights into its biogeochemical composition. Specifically, we found marked differences in the diagenetic stable indicator profiles, suggesting a heterogeneous seeps provenance. Moreover, the 801 plastic particles found in the 1372 g of tar surveyed, with a maximum concentration of 2.0 items/g, showed interesting patterns in the tar mat, with nurdles predominantly layered in the external of the tar mat and lines in the inner core. Overall, the collected observation suggests that tar entraps plastics through a stepwise process and is a sink for them.


Assuntos
Plásticos , Resíduos , Resíduos/análise , Mar Mediterrâneo , Monitoramento Ambiental , Espanha
7.
Chemosphere ; 327: 138509, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36996920

RESUMO

Current information regarding the effects of both micro- and nano-plastic debris on coral reefs is limited; especially the toxicity onto corals from nano-plastics originating from secondary sources such as fibers from synthetic fabrics. Within this study, we exposed the alcyonacean coral Pinnigorgia flava to different concentrations of polypropylene secondary nanofibers (0.001, 0.1, 1.0 and 10 mg/L) and then assayed mortality, mucus production, polyps retraction, coral tissue bleaching, and swelling. The assay materials were obtained by artificially weathering non-woven fabrics retrieved from commercially available personal protective equipment. Specifically, polypropylene (PP) nanofibers displaying a hydrodynamic size of 114.7 ± 8.1 nm and a polydispersity index (PDI) of 0.431 were obtained after 180 h exposition in a UV light aging chamber (340 nm at 0.76 Wˑm-2ˑnm-1). After 72 h of PP exposure no mortality was observed but there were evident stress responses from the corals tested. Specifically, the application of nanofibers at different concentrations caused significant differences in mucus production, polyps retraction and coral tissue swelling (ANOVA, p < 0.001, p = 0.015 and p = 0.015, respectively). NOEC (No Observed Effect Concentration) and LOEC (Lowest Observed Effect concentration) at 72 h resulted 0.1 mg/L and 1 mg/L, respectively. Overall, the study indicates that PP secondary nanofibers can cause adverse effects on corals and could potentially act as a stress factor in coral reefs. The generality of the method of producing and assaying the toxicity of secondary nanofibers from synthetic textiles is also discussed.


Assuntos
Antozoários , Nanofibras , Animais , Polipropilenos/toxicidade , Nanofibras/toxicidade , Recifes de Corais , Tempo (Meteorologia)
8.
Environ Sci Pollut Res Int ; 30(13): 36311-36324, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36547830

RESUMO

It has been suggested that the seafloor may be a sink for the plastic debris that enters the ocean. Therefore, the collection of data in the seafloor sediments regarding the co-presence of microplastics (MPs) and contaminants associated to plastic is considered a relevant topic. However, the number of studies addressing their possible correlation in this environment is still limited, and very little is known about the mechanisms that determine the release of plastic additives from plastic items. Starting from this basis, we investigated the presence of MPs and eleven phthalic acid esters (PAEs) in the continental shelf offshore Barcelona. Following a shelf-slope continuum approach, we sampled sediments from five stations, and we performed analysis by means of infrared micro spectroscopy (µFTIR) and liquid chromatography tandem mass spectrometry (LC-MS/MS). MPs were found to range from 62.0 to 931.1 items/kg d.w. with maximum concentration in the submarine canyon Besòs and at the highest depth. Moreover, different trends in the size distribution of fibers and non-fibers were observed, indicating the occurrence of a size dependent selection mechanism during transport and accumulation. PAEs resulted comprised between 1.35 to 2.41 mg/kg with Di(2-ethylhexyl)phthalate (DEHP) the most abundant congeners (1.04 mg/kg). Statistical analysis revealed no correlation between the Σ11PAEs and the total MPs concentration, but correlation between DEHP and fibers (σ = 0.667, p = 0,037), that resulted both correlated to the distance to the coast (ρ = 0.941 with p = 0,008 and ρ = 0.673 with p = 0.035, respectively).


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Poluentes Químicos da Água , Plastificantes/análise , Plásticos/análise , Dietilexilftalato/análise , Ácidos Ftálicos/análise , Microplásticos/análise , Cromatografia Líquida , Poluentes Químicos da Água/análise , Espectrometria de Massas em Tandem , Ésteres/análise , Dibutilftalato/análise
9.
Mar Pollut Bull ; 185(Pt A): 114328, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36368079

RESUMO

The occurrence of microplastics (MPs) and phthalic acid esters (PAEs) in wild purple sea urchins (Paracentrotus lividus) of Sardinia (Italy, Western Mediterranean Sea) was surveyed. Specifically, MPs were analyzed in the digestive tract by µFTIR and PAEs in the gonads by SPME-LC-MS/MS. 9 out of 22 specimens resulted contaminated with MPs and 20 displayed levels of PAEs over the quantification limit. A total of 23 MPs were detected with a maximum concentration of 4 microplastics/individual in the commercially undersized specimens. PAEs displayed average concentration of 32 ng/g, σ = 5.3 with maximum value of 77 ng/g. The most abundant congeners were DEHP (17 ng/g, σ = 4.3) and DBP (10 ng/g, σ = 2.5). Statistical analysis showed correlation between DEHP and fiber concentrations and among the concentration of MEP, DEP, DBP and BBzP. Due to local use of sea urchin gonads as gourmet delicacy, the potential human exposition to MPs and PAEs by consumption is also discussed.


Assuntos
Dietilexilftalato , Paracentrotus , Ácidos Ftálicos , Animais , Humanos , Cromatografia Líquida , Dietilexilftalato/análise , Ésteres/análise , Itália , Mar Mediterrâneo , Microplásticos , Ácidos Ftálicos/análise , Plásticos/análise , Ouriços-do-Mar , Espectrometria de Massas em Tandem
10.
Mar Pollut Bull ; 185(Pt A): 114236, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257245

RESUMO

Sea ice is heavily contaminated with microplastics particles (MPs, <5 mm). First-year sea ice cores (38-41 cm thick) were taken in the beginning of spring in a narrow populated bay of the Sea of Japan. Two ice cores were examined (layer-by-layer, excluding surface) for MPs content: one using µ-FTIR for 25-300 µm (SMPs), and another one - with visual+Raman identification for 300-5000 µm particles (LMPs). The integral (25-5000 µm) bulk mean abundance of MPs was found to be 428 items/L of meltwater, with fibers making 19 % in SMPs size range and 59 % in LMPs. Integral mean mass of MPs was estimated in 34.6 mg/L, with 99.6 % contribution from fragments of LMPs. Comparison with simple fragmentation models confirms deficit of SMPs (especially of fibers in size range 150-300 µm), suggested to result from their leakage with brine. Multivariate statistical analysis indicates strong positive correlation of large fiber (>300 µm) counts and ice salinity.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Camada de Gelo , Baías , Japão , Monitoramento Ambiental , Poluentes Químicos da Água/análise
11.
Chemosphere ; 308(Pt 1): 136281, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36064015

RESUMO

Microplastics (MPs) are recognised as an emerging environmental problem that needs to be carefully monitored. So far, MPs have been widely recorded in marine and freshwater ecosystems. Still, few studies have focused on MP occurrence in terrestrial ecosystems, although soils are suspected to be one of the main MP reservoirs. To test a non-invasive method for assessing MP contamination in terrestrial ecosystems, we analysed the pellets of a top terrestrial predator, the barn owl (Tyto alba). Sixty pellets were collected from three agricultural areas (20 pellets each) and analysed to assess both barn owl diet and MP content. Thirty-four MPs were confirmed by micro-Fourier Transform Infrared Spectroscopy (µ-FTIR) analysis in 33% of the pellets (min-max 1-5 MPs per pellet). Most of the detected items were microfibres (88.2%). Polyethylene terephthalate, polyacrylonitrile and polyamide were the most abundant polymers. One of the three sites was significantly less contaminated. In the two sites with the highest MP occurrences, barn owl diet was characterised by predation on synanthropic rodents, particularly brown rats (Rattus norvegicus), which may indicate habitat degradation and increased exposure to MPs. Analyses also suggest that Savi's pine vole (Microtus savii) is the prey least at risk of MP contamination, probably due to its strictly herbivorous diet. We argue that the analysis of barn owl pellets may represent a cost-effective method for monitoring MP contamination in terrestrial ecosystems.


Assuntos
Estrigiformes , Poluentes Químicos da Água , Animais , Arvicolinae , Ecossistema , Monitoramento Ambiental , Microplásticos , Nylons , Plásticos , Polietilenotereftalatos , Ratos , Roedores , Solo , Poluentes Químicos da Água/análise
12.
Mar Pollut Bull ; 180: 113773, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35623215

RESUMO

The presence of microplastics in the world's oceans and their effects on marine habitats are highly concerning. As suspension-feeders, corals are very exposed to microplastics, compromising the health of coral reef ecosystems. In this study we surveyed for the first time the presence of microplastics in Maldivian reef-building corals. Aiming to determine the influence of exposure and depth on microplastic distribution, analyses were carried out on 38 individuals belonging to three different species. 58% of the investigated colonies resulted contaminated with particles within the 25-150 µm size range. The maximum concentration was encountered in a Pocillopora verrucosa colony sampled from a shallow inner reef (8.9 particles/g of coral). No significant differences in microplastic concentration were observed between different depths, exposures, sites and species. Overall, this study confirmed microplastic presence in coral reefs of the Maldivian archipelago including foundation species.


Assuntos
Antozoários , Animais , Recifes de Corais , Ecossistema , Microplásticos , Plásticos/análise
13.
Chemosphere ; 297: 134247, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35259364

RESUMO

The bioconcentration of dimethyl phthalate (DMP) diethyl phthalate (DEP) dibutyl phthalate (DBP) butyl benzyl phthalate (BBzP), di-(2-ethy hexyl) phthalates (DEHP), mono-butyl phthalate (MBP), mono-benzyl phthalate (MBzP), mono-(2-ethy hexyl) phthalate (MEHP) in the soft corals Coelogorgia palmosa, Sinularia sp., Sarcophyton glaucum, and Lobophytum sp. was investigated. Specimens were cultured in a microcosm environment built-up at the Genova Aquarium and analyses were carried out by in vivo SPME-LC-MS/MS. The distributions of the phthalates among the four surveyed species resulted significantly different. Calculated bioconcentration factors (BCFs) showed values spanning over two orders of magnitude, from a minimum of log10 BCFDEP = 1.0 in Sarcophyton glaucum to a maximum of log10 BCFDBP = 3,9 calculated for Coelogorgia palmosa. Moreover, the calculated BCFs of the long chain phthalates resulted up to three orders of magnitude lower than theoretically predicted (from logKow), whereas BCF of short chain phthalates resulted higher. This, together with the detection of phthalic acid monoesters, suggests the presence of species-specific different metabolic transformation among the surveyed soft coral species that involve DEHP.


Assuntos
Antozoários , Dietilexilftalato , Ácidos Ftálicos , Animais , Antozoários/metabolismo , Bioacumulação , Cromatografia Líquida , Dibutilftalato/metabolismo , Dietilexilftalato/metabolismo , Ácidos Ftálicos/metabolismo , Especificidade da Espécie , Espectrometria de Massas em Tandem
14.
Sci Total Environ ; 824: 153709, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35150686

RESUMO

Microplastics (MPs) pollution is one of the most important problems of the Earth. They have been found in all the natural environments, including oceans and the atmosphere. In this study, the concentrations of both atmospheric and marine MPs were measured over the Baltic along a research cruise that started in the Gdansk harbour, till the Gotland island, and the way back. A deposition box (based on a combination of active/passive sampling) was used to collect airborne MPs while, marine MPs concentrations were investigated during the cruise using a dedicated net. Ancillary data were obtained using a combination of particle counters (OPC, LAS and CPC), Aethalometer (AE33 Magee Scientific), spectrofluorometer (sea surface samples, Varian Cary Eclipse), and meteorological sensors. Results showed airborne microplastics average concentrations higher in the Gdansk harbour (161 ± 75 m-3) compared to the open Baltic Sea and to the Gotland island (24 ± 9 and 45 ± 20 m-3). These latter values are closer to the ones measured in the sea (79 ± 18 m-3). The MPs composition was investigated using µ-Raman (for the airborne ones) and FTIR (for marine ones); similar results (e.g. polyethylene, polyethylene terephthalates, polyurethane) were found in the two environmental compartments. The concentrations and similar composition in air and sea suggested a linkage between the two compartments. For this purpose, the atmospheric MPs' equivalent aerodynamic diameter was calculated (28 ± 3 µm) first showing the capability of atmospheric MPs to remain suspended in the air. At the same time, the computed turnover times (0.3-90 h; depending on MPs size) limited the transport distance range. The estimated MPs sea emission fluxes (4-18 ∗ 106 µm3 m-2 s-1 range) finally showed the contemporary presence of atmospheric transport together with a continuous emission from the sea surface enabling a grasshopper long-range transport of microplastics across the sea.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Poluição Ambiental , Plásticos , Poluentes Químicos da Água/análise
15.
Mar Drugs ; 20(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35200663

RESUMO

The octocoral family Alcyoniidae represents a rich source of bioactive substances with intriguing and unique structural features. This review aims to provide an updated overview of the compounds isolated from Alcyoniidae and displaying potential cytotoxic activity. In order to allow a better comparison among the bioactive compounds, we focused on molecules evaluated in vitro by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, by far the most widely used method to analyze cell proliferation and viability. Specifically, we surveyed the last thirty years of research, finding 153 papers reporting on 344 compounds with proven cytotoxicity. The data were organized in tables to provide a ranking of the most active compounds, to be exploited for the selection of the most promising candidates for further screening and pre-clinical evaluation as anti-cancer agents. Specifically, we found that (22S,24S)-24-methyl-22,25-epoxyfurost-5-ene-3ß,20ß-diol (16), 3ß,11-dihydroxy-24-methylene-9,11-secocholestan-5-en-9-one (23), (24S)-ergostane-3ß,5α,6ß,25 tetraol (146), sinulerectadione (227), sinulerectol C (229), and cladieunicellin I (277) exhibited stronger cytotoxicity than their respective positive control and that their mechanism of action has not yet been further investigated.


Assuntos
Antozoários/química , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neoplasias/patologia
16.
Sci Total Environ ; 819: 152965, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35016940

RESUMO

Plastic pollution threatens the marine environment, especially due to the adverse effects caused by micro and nano particles interacting with the marine biota. In order to provide reliable data regarding micro and nanoplastic contamination and the related impacts, efficient analytical solutions are needed. We developed a new analysis workflow that uses marine sponges to monitor plastic pollution by characterizing the plastic particles accumulated in their tissue. Specimens of cf. Haliclona (Haplosclerida) were sampled in the Maldivian archipelago. The aim was to optimize the method and to carry out a pilot study of the contamination of the related reef habitat. Particles were isolated, size fractioned, counted and submitted to morphological and chemical characterization. The constituting polymer was identified by infrared microspectroscopy for particles >25 µm, and by pyrolysis coupled with gas chromatography mass spectrometry for those <25 µm. Method recoveries were between 87 and 83% and limits of quantitation (LOQs) were between 6.6 and 30.2 ng/g. Analyses showed that 70% of the sponges presented plastic contamination, with an average of 1.2 particles/g tissue for the 25-150 µm size range, and a total plastic concentration of up to 4.8 µg/g in the 0.2-25 µm size range, with polyolefin being the most represented polymer in both size ranges. Overall, the study demonstrated the reliability of the proposed analytical workflow and of the use of sponges as biosamplers for plastic particles.


Assuntos
Poríferos , Poluentes Químicos da Água , Animais , Cromatografia Gasosa-Espectrometria de Massas , Projetos Piloto , Plásticos/análise , Pirólise , Reprodutibilidade dos Testes , Análise Espectral , Poluentes Químicos da Água/análise
17.
Mar Pollut Bull ; 173(Pt B): 113072, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34700151

RESUMO

Sediment core samples from high tide lines and in submerged zones as well as surface water samples from eight beaches of Tenerife were analysed. Sampling was conducted over a period of one year in intervals of 5 weeks. The majority of particles were found in the high tide sediment (66%), followed by water samples (23%) and finally in sediment from submerged zones (11%). Regarding the particle amount per volume (items/L), accumulation in sediment samples was statistically higher compared to water samples. Mean values of items/L were higher in high tide sediments. In high tide and water samples, mostly white and transparent particles >1 mm were found. More than 70% were represented by fragments. In sediments from submerged zones, yellow and blue microparticles (<1 mm) were predominant and 61.9% consisted of fibres. Larger particles were mainly identified as PP, PE, PS, PTFE and PVC, while polymer types of smaller particles were more variable.


Assuntos
Plásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Espanha , Água , Poluentes Químicos da Água/análise
18.
Ecotoxicol Environ Saf ; 225: 112775, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34536794

RESUMO

Microplastic pollution represents a global problem with negative impacts on aquatic environment and organisms' health. To date, most of the laboratory toxicological studies on microplastics (MPs) have made use of single commercial micro and nano-polymers, which do not reflect the heterogeneity of environmental MPs. To improve the relevance of the hazard assessment, micrometer-sized plastic particles of miscellaneous non-reusable waste plastics, with size <100 µm and <50 µm (waste microplastics, wMPs), were characterized by microscopic and spectroscopic techniques and tested on developing zebrafish and Xenopus laevis by FET and FETAX assays respectively. Moreover, the modalities of wMP interaction with the embryonic structures, as well as the histological lesions, were explored by light and electron microscopy. We have shown that wMPs had very heterogeneous shapes and sizes, were mainly composed of polyethylene and polypropylene and contained metal and organic impurities, as well as submicrometric particle fractions, features that resemble those of environmental occurring MPs. wMPs (0.1-100 mg/L) caused low rate of mortality and altered phenotypes in embryos, but established species-specific biointeractions. In zebrafish, wMPs by adhering to chorion were able to delay hatching in a size and concentration dependent manner. In Xenopus embryos, which open stomodeum earlier than zebrafish, wMPs were accumulated in intestinal tract, where produced mechanical stress and stimulated mucus overproduction, attesting an irritation response. Although wMP biointeractions did not interfere with morphogenesis processes, further studies are needed to understand the underlying mechanisms and long-term impact of these, or even smaller, wMPs.


Assuntos
Microplásticos , Plásticos , Anfíbios , Animais , Plásticos/toxicidade , Polietileno , Peixe-Zebra
19.
Mar Pollut Bull ; 168: 112450, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33991989

RESUMO

The presence of microplastics (MPs) in the marine environment is a concerning topic due to the ecotoxicological effects and possible seafood contamination. Data is needed to evaluate human exposure and assess risks, in the context of a healthy and beneficial seafood consumption. While microplastic ingestion by wild fish has been reported since the early 70's, farmed fish are rarely investigated. Here, for the first time the presence of microplastics in fish cultivated in the coastal water of Tenerife (Canary Island, Spain) was evaluated. From 83 examined individuals, 65% displayed microplastics in their gastrointestinal tracts, with averages between 0.6 ± 0.8 (SD) and 2.7 ± 1.85 (SD) particles per fish. The total number of microplastics detected was 119. Fibres (81%) and fragments (12%) were the predominant shapes. FTIR analysis showed that fibres were mostly composed by Cellulose (55%) and Nylon (27%), whereas fragments by PE (25%) and PP (25%).


Assuntos
Bass , Poluentes Químicos da Água , Animais , Ingestão de Alimentos , Monitoramento Ambiental , Humanos , Microplásticos , Plásticos , Espanha , Poluentes Químicos da Água/análise
20.
Mar Pollut Bull ; 168: 112436, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33964667

RESUMO

Due to the ecotoxicological effects, microplastics are considered a threat for the marine environment. Recent reports indicate their presence not only in subsurface water and in coastal beach sediments, but also in the deep-sea. Notwithstanding, there is still not a scientific consensus about the analytical procedure to be applied for their determination. In this work we compared the performance of two extraction methods: pressurized solvent extraction (PSE) and density separation. Sea sand and seafloor sediments were spiked with known amounts of polystyrene (PS), polyethylene (PE) and polypropylene (PP) microplastics and submitted to both the extraction procedures. Results showed that the PSE ensured higher recoveries for the smaller size particle fractions (89,2 ± 1.1% in the 50-150 µm range) whereas the density separation enabled precise recoveries for the larger size particles (SD = 1,5%). No significant differences in terms of blanks control were highlighted.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Plásticos , Solventes , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...